
Design and Implementation of a Context-Sensitive,
Flow-Sensitive Activity Analysis Algorithm for
Automatic Differentiation

Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL60439
jaewook,malusare,hovland@mcs.anl.gov

Summary. Automatic differentiation (AD) has been expanding its rolein scientific comput-
ing. While several AD tools have been actively developed andused, a wide range of problems
remain to be solved. Activity analysis allows AD tools to generate derivative code for fewer
variables, leading to a faster run time of the output code. This paper describes a new context-
sensitive, flow-sensitive (CSFS) activity analysis, whichis developed by extending an existing
context-sensitive, flow-insensitive (CSFI) activity analysis. Our experiments with eight bench-
marks show that the new CSFS activity analysis is more than 27times slower but reduces 8
overestimations for the MIT General Circulation Model (MITgcm) and 1 for an ODE solver
(c2) compared with the existing CSFI activity analysis implementation. Although the num-
ber of reduced overestimations looks small, the additionally identified passive variables may
significantly reduce tedious human effort in maintaining a large code base such as MITgcm.

Key words: automatic differentiation, activity analysis

1 Introduction

Automatic differentiation (AD) is a promising technique inscientific computing because it
provides many benefits such as accuracy of the differentiated code and the fast speed of dif-
ferentiation. Interest in AD has led to the development of several AD tools, including some
commercial software. AD tools take as input a mathematical function described in a pro-
gramming language and generate as output a mathematical derivative of the input function.
Sometimes, however, users are interested in a derivative ofan input function for a subset of
the output variables with respect to a subset of the input variables. Those input and output
variables of interest are calledindependentanddependentvariables, respectively, and are ex-
plicitly specified by users. When the independent and dependent variable sets are relatively
small compared to the input and output variable sets of the function, the derivative code can
run much faster by not executing the derivative code for the intermediate variables that are not
contributing to the desired derivative values. Such variables are said to bepassive(or inactive).
The other variables whose derivatives must be computed are said to beactive, and the analy-
sis that identifies active variables is calledactivity analysis. Following [7], we say a variable
is varied if it (transitively) depends on any independent variable and usefulif any dependent

2 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

variable (transitively) depends on it; we say it isactiveif it is both varied and useful. Activity
analysis isflow-sensitiveif it takes into account the order of statements and the control flow
structure of the given procedure andcontext-sensitiveif it is an interprocedural analysis that
considers only realizable call-return paths.

In our previous work, we developed a context-sensitive, flow-insensitive activity analysis
algorithm, called variable dependence graph activity analysis (VDGAA), based on variable
dependence graphs [11]. This algorithm is very fast and generates high-quality output; in
other words, the set of active variables determined by the algorithm is close to the set of true
active variables. However, we have observed a few cases where the algorithm overestimated
passive variables as active because of its flow insensitivity. These cases suggest that the over-
estimations could be eliminated if we developed an algorithm that is both context-sensitive and
flow-sensitive (CSFS). Such an algorithm would also be useful in evaluating overestimations
of VDGAA.

Often, AD application source codes are maintained in two sets: the codes that need to
be differentiated and those that are kept intact. When the codes in the former set are trans-
formed by an AD tool, some passive global variables are oftenoverestimated as active by the
tool. If these global variables are also referenced by the codes in the latter set, type mismatch
occurs between the declarations of the same global variablein two or more source files: the
original passive type vs. AD transformed active type. Similar situations occur for functions
when passive formal parameters are conservatively determined as active by AD tools and the
functions are also called from the codes in the latter set [4]. In order to adjust the AD trans-
formed types back to the original type, human intervention is necessary. As one option, users
may choose to annotate such global variables and formal parameters in the code so that AD
tools can preserve them as passive. However, this effort canbe tedious if all formal variables
that are mapped to the globals and formal parameters for the functions in the call chain have
to be annotated manually. The burden of such human effort will be lifted significantly if a
high-quality activity analysis algorithm is employed.

In this paper, we describe a CSFS activity analysis algorithm, which we have developed
by extending VDGAA. To incorporate flow sensitivity, we use definitions and uses of variables
obtained from UD-chains and DU-chains [1]. The graph we build for the new CSFS activity
analysis is called def-use graph (DUG) because each node represents a definition now and
each edge represents the use of the definition at the sink of the edge. Named after the graph,
the new CSFS activity analysis algorithm is called DUGAA. The subsequent two sweeps over
the graph are more or less identical to those in VDGAA. In a forward sweep representing the
variedanalysis, all nodes reachable from the independent variable nodes are colored red. In the
following backward sweep representing theusefulanalysis, all red nodes reachable from any
dependent variable node are colored blue. The variables of the blue nodes are also determined
asactive.

Our contributions in this paper are as follows:

• A new CSFS activity analysis algorithm
• Implementation and experimental evaluation of the new algorithm on eight benchmarks

In the next section, we describe the existing CSFI activity analysis VDGAA and use exam-
ples to motivate our research. In Section 3, the new CSFS activity analysis algorithm DUGAA
is described. In Section 4, we present our implementation and experimental results. In Sec-
tion 5, we discuss related research. We conclude and discussfuture work in Section 6.

CSFS Activity Analysis 3

2 Background

We motivate our research by explaining the existing CSFI activity analysis algorithm and its
flow insensitivity. We then discuss how flow sensitivity can be introduced to make a context-
sensitive, flow-sensitive algorithm.

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
a = f
g = a

end subroutine

(a) All variables are active.

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
g = a
a = f

end subroutine

(b) No variables are active.

Fig. 1. Example showing the flow insensitivity of the existing CSFI algorithm.

VDGAA starts by building a variable dependence graph, wherenodes represent variables
and edges represent dependence between them [9]. Since a variable is represented by a single
node in the graph, all definitions and uses of a variable are represented by the edges coming
in and out the node. The order information among the definitions and uses cannot be retrieved
from the graph. By building this graph, we assume that all definitions of a variable reach all
uses of the variable. In terms of activity, this assumption results in more active variables than
the true active ones. The two code examples in Figure 1 show the overestimation caused by
flow insensitivity of VDGAA. In Figure 1(a), all five variables are active because there is a
value flow path from x to y that includes all five variables,x → f → a → g → y, while no
variables are active in (b) because no value flow paths exist fromx to y.

Figure 2(a) shows a variable dependence graph generated by VDGAA, which produces
the same graph for both codes in Figure 1. Nodes are connectedwith directed edges repre-
senting the direction of value flow. The edge labels show the edge types, which can be CALL,
RETURN, FLOW, or PARAM. A pair of CALL and RETURN edges is generated for each
pair of actual and formal parameters if called by reference.FLOW edges are generated for
assignment statements, one for each pair of a used variable and a defined variable in the state-
ment. PARAM edges summarize the value flows between formal parameters of procedures
such that there is a PARAM edge from a formal parameter to another if there is a value flow
path between them in the same direction. In Figure 2(a), two pairs of CALL and RETURN
edges show the value flow between actual and formal parameters for the two actual parameters
in the call tofoo. The two FLOW edges are generated for the two assignment statements in
procedurefoo. The PARAM edge from node 23 to node 25 summarizes the value flow path
f → a → g. Although not useful in this example, PARAM edges allow all other types of
edges to be navigated only once during the subsequentvariedandusefulanalyses. The num-
bers in the edge labels show the address of the call expression for CALL and RETURN edges,
which are used to allow color propagations only through realizable control paths. Because of
its flow insensitivity, the same graph is generated from the two different codes in Figure 1, and
hence the same activity output. Although we know this behavior of VDGAA, determining the
amount of overestimation is not easy.

4 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

head_(22)
x

foo_(23)
f

CALL
(1093650052)

RETURN
(1093650052)

foo_(25)
g

PARAM
foo_(26)

a

FLOW

head_(24)
y

CALL
(1093650052)

RETURN
(1093650052)

FLOW

(a) The VDG for both
Figure 1(a) and (b).

foo_(23)
f@1

foo_(32)
a@1093649124

foo_(33)
g@1093649196

foo_(29)
g@2

head_(22)
x@1

foo_(24)
f@2

head_(30)
y@1093650052

foo_(28)
g@1

RETURN
(1083754540)

RETURN
(1093650052)

CALL
(1093650052)

CALL
(1093650052)

FLOW

PARAM FLOW

FLOW

PARAM

head_(31)
y@2 FLOW

head_(25)
x@1093650052

head_(26)
x@2

head_(27)
y@1

FLOW

(b) The DUG for Figure 1(a).

foo_(23)
f@1

foo_(32)
g@1093649244

foo_(33)
a@1093649316

foo_(29)
g@2

head_(22)
x@1

foo_(24)
f@2

head_(30)
y@1093650172

foo_(28)
g@1

RETURN
(1093650172)

RETURN
(1093650172)

CALL
(1093650172)

CALL
(1093650172)

FLOW

FLOW

head_(31)
y@2

FLOW

head_(25)
x@1093650172

head_(26)
x@2

head_(27)
y@1

FLOW

(c) The DUG for
Figure 1(b).

Fig. 2. Def-use graphs generated by the new CSFS algorithm.

We developed a context-sensitive, flow-sensitive activityanalysis algorithm to achieve two
goals. First, we wish to evaluate how well VDGAA performs in terms of both the analysis run
time and the number of active variables. Second, in the casesargued in Section 1, identifying
several more inactive variables compared with VDGAA is desirable, even at the cost of the
longer analysis time. The key idea in the new CSFS algorithm (DUGAA) is to use variable
definitions obtained from UD/DU-chains [1] to represent thenodes in the graph. DUGAA
combines flow sensitivity of UD/DU-chains with the context sensitivity of VDGAA. Since
a statement may define more than one variable1, as a node key we use a pair comprising
a statement and a variable. Figures 2(b) and (c) show the two def-use graphs for the two
codes in Figures 1(a) and (b). Unlike the VDG in Figure 2(a), the node labels in DUGs have
a statement address concatenated at the end of the variable name and a symbol@. DUG is
similar to system dependence graphof [10]. Among other differences, DUG does not have
predicate nodes and control edges. Instead, flow sensitivity is supported by using UD/DU-
chains. We use two special statement addresses: 1 and 2 for the incoming and outgoing formal
parameter nodes, respectively. Since the DUG in Figure 2(c)has no path from any of the
independent variable nodes (forx) to any of the dependent variable nodes (fory), no variables
are active in the output produced by DUGAA for the code in Figure 1(b).

3 Algorithm

In this section, we describe the new activity analysis algorithm DUGAA. Similar to VDGAA,
the DUGAA algorithm consists of three major steps:

1. Build a def-use graph.
2. Propagate red color forward from the independent variable nodes to find thevariednodes.
3. Propagate blue color backward along the red nodes from thedependent variable nodes to

find theactivenodes.

1 as in call-by-reference procedure calls of Fortran 77

CSFS Activity Analysis 5

A def-use graph is a tuple (V, E), where a node N∈ V represents a definition of a variable in a
program and an edge (n1, n2)∈ E represents a value flow from n1 to n2. Since all definitions
of a variable are mapped to their own nodes, flow sensitivity is preserved in DUG.

Algorithm Build-DUG(program PROG)
UDDUChain← build UD/DU-chains from PROG
DUG← new Graph
DepMatrix← new Matrix
for each procedure Proc∈ CallGraph(PROG) in reverse postorder

for each statement Stmt∈ Proc
// insert edges for the destination operand
for each (Src,Dst) pair∈ Stmt where Src and Dst are variables

InsertUseDefEdge(Src, Dst, Stmt, Proc)
// insert edges for the call sites in the statement
for each call site Call to Callee∈ Stmt

for each (ActualVar,FormalVar) pair∈ Call
InsertCallRetEdges(ActualVar, FormalVar, Stmt, Proc, Callee, Call)

connectGlobals()
makeParamEdges()

Fig. 3. Algorithm: Build a def-use graph from the given program.

Figure 3 shows an algorithm to build a DUG. For each statementin a given program, we
generate a FLOW edge from each reaching definition for each source variable to the definition
of the statement. If the statement contains procedure calls, we also add CALL and RETURN
edges. For global variables, we connect definitions after weprocess all statements in the pro-
gram. PARAM edges are inserted between formal parameter nodes for each procedure if there
is a value flow path between them. Below, each of the major component algorithms is de-
scribed in detail.

Algorithm InsertUseDefEdge(variable Src,\
variable Dst, stmt Stmt, procedure Proc)
DefNode← node(Stmt, Dst)
// edges from uses to the def
for each reaching definition Rd for Src

// for an upward exposed use
if (Rd is an upward exposed use)

if (Src is a formal parameter)
Rd← stmt(1)

else
if (Src is a global variable)

GlobalUpUse[Src].insert(aRecord(\
Dst, Stmt, Proc, callExp(0), Proc))

continue
DUG.addEdge(node(Rd, Src), DefNode,\
FLOW, Proc, Proc, Proc, callExp(0))

// edges for downward exposed definitions
if (Stmt has a downward exposed def)

if (Dst is a formal parameter)
DUG.addEdge(DefNode, node(stmt(2),\
Dst), FLOW, Proc, Proc, Proc, callExp(0))

else if (Dst is a global variable)
GlobalDnDef[Dst].insert(aRecord(Dst, Stmt,\
Proc, callExp(0), Proc))

Algorithm InsertCallRetEdge(variable Actual,\
variable Formal, stmt Stmt, procedure Proc,\
procedure Callee, callExp Call)
// CALL edges from actuals to the formal
for each reaching definition Rd for Actual

if (Rd is an upward exposed use)
if (Actual is a formal parameter)

Rd← stmt(1)
else if (Actual is a global variable)

GlobalUpUse[Actual].insert(aRecord(\
Formal, stmt(1), Callee, Call, Proc))

continue
DUG.addEdge(node(Rd, Actual), node(stmt(1),\
Formal), CALL, Proc, Callee, Proc, Call)

// RETURN edges for call-by-reference parameters
if (Actual is not passed by reference)return
DUG.addEdge(node(stmt(2), Formal), node(Stmt,\
Actual), RETURN, Callee, Proc, Proc, Call)
// edges for downward exposed definitions of Actual
if (Stmt has a downward exposed def) // DU-chain

if (Actual is a formal parameter)
DUG.addEdge(node(Stmt, Actual), node(stmt(2),\
Actual), FLOW, Proc, Proc, Proc, callExp(0))

else if (Actual is a global variable)
GlobalDnDef[Actual].insert(aRecord(Actual,\
Stmt, Proc, callExp(0), Proc))

Fig. 4. Algorithm: Insert edges.

6 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Flow sensitivity is supported by using variable definitionsobtained from UD/DU-chains.
Since a statement may define multiple variables as in call-by-reference function calls, however,
we use both statement address and variable symbol as a node key. We generate two nodes
for each formal parameter: one for the incoming value along CALL edge and the other for
the outgoing value along RETURN edge. As discussed in Section 2, two special statement
addresses are used for the two formal parameter nodes. Upward exposed uses and downward
exposed definitions must be connected properly to formal parameter nodes and global variable
nodes. Figure 4 shows two algorithms to insert edges.InsertUseDefEdge inserts multiple
edges for the given pair of a source variable (Src) and a destination variable (Dst) in an
assignment statement (Stmt). UD-chains are used to find all reaching definitions forSrc and
to connect them to the definition ofDst. If the reaching definition is an upward exposed
use, an edge is connected from an incoming node ifSrc is a formal parameter; ifSrc is
a global variable, the corresponding definition (Dst and Stmt) is stored inGlobalUpUse

for Src together with other information. If the definition ofDst is downward exposed, we
connect an edge from the definition node to the outgoing formal parameter node ifDst is a
formal parameter; for globalDst, we store the definition information inGlobalDnDef. Later,
we make connections from all downward exposed definitions toall upward exposed uses for
each global variable.InsertCallRetEdge inserts edges between a pair of actual and formal
parameter variables. CALL edges are inserted from each reaching definition of the actual
parameter to the incoming node of the formal parameter. If the actual parameter is passed by
reference, a RETURN edge is also inserted from the outgoing node of the formal parameter
to the definition node of the actual parameter atStmt.

Algorithm makeParamEdges()
for each procedure Proc∈ CallGraph(PROG) in postorder

for each node N1∈ ProcNodes[Proc]
for each node N2∈ ProcNodes[Proc]

if (N1 == N2)continue

if (DepMatrix[Proc][N1][N2])continue

if (!DUG.hasOutgoingPathThruGlobal(N1))continue

if (!DUG.hasIncomingPathThruGlobal(N2))continue

if (DUG.hasPath(N1, N2))
DepMatrix[Proc][N1][N2] = true

transitiveClosure(Proc)
for each formal parameter Formal1∈ Proc

for each formal parameter Formal2∈ Proc
FNode1← node(stmt(1), Formal1)
FNode2← node(stmt(2), Formal2)
if (!DepMatrix[Proc][FNode1][FNode2])continue

DUG.addEdge(FNode1, FNode2, PARAM, Proc, Proc, Proc, callExp(0))
for each call site Call∈ Callsites[Proc]

Caller← CallsiteToProc[Call]
for each node Actual2∈ FormalToActualSet[Call][FNode2]

if (Actual2.Symbol is not called by reference)continue

for each node Actual1∈ FormalToActualSet[Call][FNode1]
DepMatrix[Caller][Actual1][Actual2]← true

Fig. 5. Algorithm: Make PARAM edges.

PARAM edges summarize value flow among formal parameters to allow multiple traver-
sals across formal parameter nodes when there are multiple call sites for the same procedure.
We add a PARAM edge from an incoming formal parameter nodef1 to an outgoing formal
parameter nodef2 whenever there is a value flow path fromf1 to f2. Figure 5 shows the al-

CSFS Activity Analysis 7

gorithm that inserts PARAM edges. Whenever a FLOW edge is created, we set an element
of the procedure’s dependence matrix to true. After building a DUG for statements and con-
necting global variable nodes, for all pairs of formal parameters we check whether there is a
value flow path between them going through other procedures via two global variables. This
checking is necessary because we perform transitive closure only for those definitions used
in each procedure. Next, we apply Floyd-Warshall’stransitive closurealgorithm [3] to find
connectivity between all pairs of formal parameter nodes. APARAM edge is added whenever
there is a path from one formal node to another. We modified theoriginal Floyd-Warshall’s
algorithm to exploit the sparsity of the matrix.

Thevariedandusefulanalyses are forward color propagation (with red) from the indepen-
dent variable nodes and backward color propagation (with blue) from the dependent variable
nodes, respectively. The propagation algorithms are described in our previous work [11].

4 Experiment

We implemented the algorithm described in Section 3 on OpenAnalysis [12] and linked it into
an AD tool called OpenAD/F [13], which is a source-to-sourcetranslator for Fortran. Figure 6
shows the experimental flow. The generated AD tool was run on amachine with a 1.86 GHz
Pentium M processor, 2 MB L2 cache, and 1 GB DRAM memory.

Open64
Fortran 90
Front end

VDGAA

DUGAA

AD
Transformation

Open64
Fortran 90
Unparser

Input
(Fortran)

Output
(Fortran)

OpenAnalysis

Fig. 6. OpenAD automatic differentiation tool.

Table 1. Benchmarks.

BenchmarksDescription Source # lines

MITgcm MIT General Circulation Model MIT 27376
LU Lower-upper symmetric Gauss-Seidel NASPB 5951
CG Conjugate gradient NASPB 2480

newton Newton’s method + Rosenbrock function ANL 2189
adiabatic Adiabatic flow model in chemical engineeringCMU 1009

msa Minimal surface area problem MINPACK-2 461
swirl Swirling flow problem MINPACK-2 355
c2 Ordinary differential equation solver ANL 64

To evaluate our implementation, we used the set of eight benchmarks shown in Table 1.
These benchmarks are identical to the ones used in our previous work [11] except for the
version of the MIT General Circulation Model, which is abouttwo times larger.

Figure 7 shows the slowdowns of DUGAA with respect to VDGAA, which are computed
by dividing the DUGAA run times by the VDGAA run times. Fornewtonandc2, the VDGAA
run times were so small that the measurements were zero. For the other six benchmarks,

8 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

MITgcm LU CG newton adiabatic msa swirl c2
Benchmarks

0

50

100

150

S
lo

w
do

w
n

of
 D

U
G

A
A

 w
ith

 r
es

pe
ct

 to
 V

D
G

A
A

Fig. 7. Slowdown in analysis run time: DUGAA with respect to VDGAA.

the slowdowns range between 27 and 106. The benchmarks are ordered in decreasing order
of program sizes, but the correlation with the slowdowns is not apparent. The run time for
DUGAA on MITgcm is 52.82 seconds, while it is 1.71 seconds forVDGAA. Figure 8 show
the component run times for both DUGAA and VDGAA on MITgcm. Since VDGAA does
not use UD/DU-chains, the run time for computing UD/DU-chains is zero. However, it take
81.26% of the total run time for DUGAA. Another component worthy of note istransitive
closure, which summarizes connectivity by adding PARAM edges between formal parameters.
The transitive closure time can be considered as part of graph building but we separated it from
the graph building time because it is expected to take a largeportion. With respect to transitive
closure times, the slowdown factor was 9.39. The graph navigation time for coloring was very
small for both algorithms. The slower speed of DUGAA was expected because it would have
many more nodes than VDGAA; The DUG for MITgcm has 13,753 nodes, whereas the VDG
has 5,643 nodes.

UD-DU
Chains

Graph Transitive
closure

Coloring
(varied, useful)

Time components

0

20

40

60

80

P
er

ce
nt

ag
e

of
 th

e
to

ta
l r

un
 ti

m
e

(%
)

VDGAA
DUGAA

Fig. 8. Analysis run-time breakdown on MITgcm: DUGAA vs. VDGAA.

CSFS Activity Analysis 9

Our next interest is the accuracy of the produced outputs. Except for MITgcm and c2, the
active variables determined by the two algorithms match exactly. Even for MITgcm and c2,
the number of overestimations by VDGAA over DUGAA is not significant; 8 out of 925 for
MITgcm and 1 out of 6 for c2. This result suggests several possibilities: First, as expected, the
number of overestimations from flow insensitivity is not significant. Second, the flow sensitiv-
ity of DUGAA can be improved by having more precise UD/DU-chains. For example, actual
parameters passed by reference are conservatively assumedto be nonscalar type. Hence, the
definition of the corresponding scalar formal parameters does not kill the definitions coming
from above. Third, aside from flow sensitivity, other types of overestimations can be made in
both algorithms because they share important features suchas graph navigation. One type of
overestimation filtered by DUGAA is activating formal parameters when they have no edges
leading to other active variables except to the corresponding actual parameters. Currently,
VDGAA filters out the cases when the formal parameters do not have any outgoing edges
than the RETURN edge going back to the actual parameter wherethe color is propagated
from, but it fails to do so when there are other outgoing edgesto other passive variables. This
type of overestimation is filtered effectively by DUGAA by separating formal parameter nodes
into two: an incoming node and an outgoing node. Although thenumber of reduced overesti-
mations looks small, as argued in Section 1 the additionallyidentified passive variables may
significantly reduce tedious human effort in maintaining a large code base such as MITgcm.

5 Related Work

Activity analysis is described in literature [2, 6] and implemented in many AD tools [5, 8, 11].
Hascoet et al. have developed a flow-sensitive algorithm based on iterative dataflow analysis
framework [7]. Fagan and Carle compared the static and dynamic activity analyses in AD-
IFOR 3.0 [5]. Their static activity analysis is context-sensitive but flow-insensitive. Unlike
other work, this paper describes a new context-sensitive, flow-sensitive activity analysis al-
gorithm. Our approach of forward and backward coloring is similar to program slicing and
chopping [14, 10]. However, the goal in that paper is to identify all program elements that
might affect a variable at a program point.

6 Conclusion

Fast run time and high accuracy in the output are two important qualities for activity anal-
ysis algorithms. In this paper, we described a new context-sensitive, flow-sensitive activity
analysis algorithm, called DUGAA. In comparison with our previous context-sensitive, flow-
insensitive (CSFI) algorithm on eight benchmarks, DUGAA ismore than 27 times slower but
reduces 8 out of 925 and 1 out of 6, determined active by the CSFI algorithm for the MIT
General Circulation Model and an ODE solver, respectively.We argue that this seemingly
small reduction in number of active variables may significantly reduce tedious human effort
in maintaining a large code base.

The current implementations for both DUGAA and VDGAA can be improved in several
ways. First, if the nodes for the variables with integral types are not included in the graph, we
expect that both the run time and the output quality can be improved. Second, more precise
UD/DU-chains also can improve the output accuracy. Third, we might be able to identify
other types of overestimation different from those alreadyidentified. Fourth, both VDGAA
and DUGAA currently support only Fortran 77. Supporting Fortran 90 and C is left as a future
work.

10 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Advanced Scientific Computing Research, Office of Sci-
ence, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. We thank Gail Pieper for
proofreading several revisions.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

2. Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0:
Automatic differentiation of Fortran 77 programs.IEEE Computational Science & Engi-
neering, 3(3):18–32, 1996.

3. Thomas Cormen, Charles Leiserson, and Ronald Rivest.Introduction to Algorithms. Mc-
Graw Hill, 2nd edition, 1990.

4. Michael Fagan, Laurent Hascoet, and Jean Utke. Data representation alternatives in se-
mantically augmented numerical models. InProceedings of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2006), pages 85–94, Los
Alamitos, CA, 2006. IEEE Computer Society.

5. Mike Fagan and Alan Carle. Activity analysis in ADIFOR: Algorithms and effective-
ness. Technical Report TR04-21, Department of Computational and Applied Mathemat-
ics, Rice University, Houston, TX, November 2004.

6. Andreas Griewank.Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

7. Laurent Hascoët, Uwe Naumann, and Valérie Pascual. “Tobe recorded” analy-
sis in reverse-mode automatic differentiation.Future Generation Computer Systems,
21(8):1401–1417, 2005.

8. Barbara Kreaseck, Luis Ramos, Scott Easterday, MichelleStrout, and Paul Hovland. Hy-
brid static/dynamic activity analysis. InProceedings of the 3rd International Workshop on
Automatic Differentiation Tools and Applications (ADTA’04), Reading, England, 2006.

9. Arun Lakhotia. Rule-based approach to computing module cohesion. InProceedings
of the 15th International Conference on Software Engineering, pages 35–44, Baltimore,
MD, 1993.

10. Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. InProceedings
of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages
41–52, 1995.

11. Jaewook Shin and Paul D. Hovland. Comparison of two activity analyses for automatic
differentiation: Context-sensitive flow-insensitive vs.context-insensitive flow-sensitive.
In ACM Symposium on Applied Computing, pages 1323–1329, Seoul, Korea, March 2007.

12. Michelle Mills Strout, John Mellor-Crummey, and Paul D.Hovland. Representation-
independent program analysis. InProceedings of The Sixth ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, September 2005.

13. Jean Utke. OpenAD: Algorithm implementation user guide. Technical Memorandum
ANL/MCS–TM–274, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL, 2004. ftp://info.mcs.anl.gov/pub/techreports/reports/TM-
274.pdf.

14. Mark Weiser. Program slicing. InProceedings of the 5th International Conference on
Software Engineering, pages 439–449, 1981.

